Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

نویسنده

  • A. Ghodsi Department of Statistics, Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
چکیده مقاله:

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the‎ ‎conditional maximum likelihood method for estimating the‎ ‎parameters of the Poisson SINAR(1,1) model‎. ‎The asymptotic‎ ‎distribution of the estimators are also derived‎. ‎The properties of‎ ‎the Yule-Walker and conditional maximum likelihood estimators are‎ ‎compared by simulation study‎. ‎Finally‎, ‎the Student data citep{student1906} on‎ ‎the yeast cells count are used to illustrate the fitting of the‎ ‎SINAR(1,1) model‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Aggregation Bias in Maximum Likelihood Estimation of Spatial Autoregressive Processes

In statistical models of spatial behavior, there is often a mismatch between the scale at which data is available and the scale at which key spatial dependencies are known to occur. However, in attempting to incorporate Þner grain information about spatial dependencies, certain estimation problems arise. Here it is shown that maximum likelihood procedures can produce signiÞcantly negative estim...

متن کامل

Poisson Difference Integer Valued Autoregressive Model of Order one

This paper aims to model integer valued time series with possible negative values and either positive or negative correlations by introducing the Poisson difference integer valued autoregressive model of order one. This model has Poisson difference marginal distribution and is defined by a new operator called the extended binomial thinning operator. It includes previous integer valued autoregre...

متن کامل

Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity

We consider maximum likelihood estimation of a particular noninvertible ARMA model with autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of conditional heteroskedasticity. These features may be attractive especially in economic and financial application...

متن کامل

Maximum Likelihood Estimation of Parameters in Generalized Functional Linear Model

Sometimes, in practice, data are a function of another variable, which is called functional data. If the scalar response variable is categorical or discrete, and the covariates are functional, then a generalized functional linear model is used to analyze this type of data. In this paper, a truncated generalized functional linear model is studied and a maximum likelihood approach is used to esti...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 14  شماره None

صفحات  15- 36

تاریخ انتشار 2015-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023